Whoops

I’ve been working on generalizing my code so that I can make comparisons for dozens (or hundreds) of cities. And of course, I’ve found a ton of bugs, mostly related to my own poor understanding of Python data structures and functions. But I also found a fundamental issue with the calculations I used in my thesis.

Distance thresholds

After looking at the job connectivity maps, I was curious to explore the idea that densities above a certain level led to walking more than cycling. I don’t have enough data to make a definitive statement, but I did find an interesting phenomenon related to connectivity in Columbus. Columbus has three disconnected zones where jobs are very close, broken up by areas of low job access.

Image depicting river systems with three different drainage densities (fine, medium, and coarse)

Intersection density

OSMnx makes it easy to generate statistics on street networks. Again these aggregated stats show very strong correlations, especially between bike mode share and intersection density. One of the problems of cycling advocacy is that there’s often not much that can be done to change this indigenous condition.

Density = destiny?

One striking result from the target area analysis is the correlation between residential density and cycling rates in the target area. For these four data points, the correlation between density and bicycle mode share is dramatic (r=0.97), which seems to speak to the importance of indigenous conditions in people’s mode choices. Unfortunately, the effect disappears when examined at the census tract level.

Maps of network connectivity to jobs

One of the factors I’m trying to measure in valuing facilities is their usefulness; do they actually go where utility cyclists want to ride? One of the factors I used was access to jobs within 1.5 miles along the cycling network. These maps really visualize the differences in density of the street networks.

Maps of commute biking and value-added facilities

Combining my concepts of target area and value-added facilities, I developed maps for each city which select the circle of census tracts near the central city which have the great number of commute cyclists.

One thing that’s visibly notable is the relatively weak connection of value-added facilities to cycling rates; only in Columbus are they well-connected. Part of what I conclude is that cultural factors and the indigenous qualities of the street network are more important than value-added facilities in cycling mode choice.

The methodology is potentially interesting for other kinds of analysis; you could easily optimize for any other census data.

Scroll to Top